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Abstract. The basic variables in discrete Lax equations can be represented as moments of 
the one-particle distribution function satisfying certain Vlasov-type kinetic dynamics. These 
kinetic equations are Hamiltonian, and the representation map is canonical. 

In this letter we construct a hierarchy of kinetic equations which produces the basic 
hierarchy of discrete Lax equations. The latter has the form [l, 21: 

L,f = [(L")+, LI m E Z +  (1) 
'x 

L =  5 +  c ai l - '  
i = O  

where the ai can be thought of as functions of either n E Z or x E R; in either case, the 
commutation rule of 5 and the a is 

where [A'(a)]( n) := a( n + I )  and [A'(a)](x) := a(x + l e ) ,  E being a (small) formal para- 
meter. Thus, A acts on functions as dual to the argument shift, and 5 is the operator 
version of A. The additional notation employed in (1) is 

l 'a = A'(a)l' l € B  (3) 

[ X ,  Y ]  := XY - m. ( 5 )  
For the first non-trivial case m = 1, (1) becomes 

which turns, in the continuous limit E + 0, A = exp( ~ d / d x ) ,  into 
a, , ,=(A-  l)(ai+l)+ai(l - A - i ) ( ~ o )  

ai,, = a i + l , x  + iaiao,x i E Z + .  (7) 
Now, the injinite-component system (7)  results, as is easy to verify, from the following 
dynamics for the one-particle distribution function f = f ( x ,  p ,  t ) :  

A similar kinetic representation can be given to the full dispersive system ( 6 )  and even 
to the whole hierarchy (l) ,  as follows. 

Set 

(C ( P I S I L O : =  c PI5' 
'SO 
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Property 1. For any Q = Z qx', the system of motion equations 

results, via the moments map (9) ,  from the single kinetic equation 
L,f= [Q+, LIS0 (10) 

i t  = [Smbl(Q+),f l(1) (11)  
where 

~ ~ ~ ~ k .  [X, Y1,l)P -[Y,xl(l,. 

Let B = (B,) be the (first) Hamiltonian structure [ 1,2] of the hierarchy (1): 
BV = - ai+jA-i. (13) 

ai, =c (AJai+j - ai+jA-i)(q.) Hj := GH/Saj.  (14) 

Thus, the motion equations with a Hamiltonian H = H ( a )  are 

Property 2. For any Hamiltonian H = H ( f ) ,  consider the motion equation 
L.=S(4f) SH 

E r  

r !  
B := E - [ay( pap)r  - (app)yar]. 

Then the matrix B (16) is Hamiltonian. 

Property 3. If H in (15) depends upon f only through the a, the Hamiltonian system 
(15) implies the Hamiltonian system (14). In other words, the moments map (9) is a 
canonical (=Hamiltonian) map between the Hamiltonian structures (16) and (13).  

Corollary 1. For Q = L'", m E Z+, the kinetic representation (1  1 )  is the same as (15)  
with H = Res(L"+')/(m + l), where 

Res(E cpx') := cpo. (17) 
Indeed, the moments map (9) is injective, and the system (1 )  can be put into the 
Hamiltonian form (14) with the Hamiltonian H = Res( L"+')/(  m + 1)  [ 1,2]. 

Corollary 2. When H runs through the set (Res(L"+')/(m+l)lm € E + } ,  the kinetic 
flows (15) all commute. 

Indeed, this set of Hamiltonians is in involution with respect to the Hamiltonian 
structure B (13) since the Hamiltonian Bows (1 )  all commute [1,2]; by property 3, 
the moments map (9) is canonical; hence, these Hamiltonians are in involution in the 
Hamiltonian structure (16); therefore, the kinetic flows (15) commute as well. 

Proof of 1. Equations (10) and (11 )  are, in full, 

ai,f C [Aj(ai+j)qj - ai+jAwi-j(qj)1 
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Applying to (19) the operation p i  dp and using the formula 
m 

pi(a,p)'(fp') dp = (-i)'u. I +J (20) I_, 
we obtain (18). 

Proof o f 2  The multiplication of symbols of pseudodiff erential operators is an associa- 
tive operation given by the formula [3] 

1 

r r .  c p o +  =C,a;(da' (+)  
for functions of x and 6. Changing 5 into p = exp(-E() results in the multiplication 

which produces the Lie algebra structure 

[cp ,  JI1(2):= + o c p  - P o +  =c=[a'(cp)(Pd,) '(+) r !  -(Pa,)'(cp)a'(+)I. (21) 

Denoting byf the coordinate on the dual space to the Lie algebra g with the commutator 
(21), we compute the associated Hamiltonian matrix B:= B ( g )  by the standard rule [2]: 

cpm) - f [ c p ,  +1(2)  

which yields (16). 

Proofof3. If H depends upon f only through the a then 

Taking the continuous limit of the properties 1-3 yields the corresponding properties 
of the continuous zero-dispersion hierarchy commuting with (7). 
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