Kinetic representation of discrete integrable systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L559
(http://iopscience.iop.org/0305-4470/22/13/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Kinetic representation of discrete integrable systems

John Gibbons \dagger and Boris A Kupershmidt \ddagger
\dagger Department of Mathematics, Imperial College, 180 Queen's Gate, London SW7 2BZ, UK \ddagger The University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Received 20 April 1989
Abstract. The basic variables in discrete Lax equations can be represented as moments of the one-particle distribution function satisfying certain Vlasov-type kinetic dynamics. These kinetic equations are Hamiltonian, and the representation map is canonical.

In this letter we construct a hierarchy of kinetic equations which produces the basic hierarchy of discrete Lax equations. The latter has the form [1, 2]:

$$
\begin{align*}
& L_{, r}=\left[\left(L^{m}\right)_{+}, L\right] \quad m \in \mathbb{Z}_{+} \tag{1}\\
& L=\zeta+\sum_{i=0}^{\infty} a_{i} \zeta^{-i} \tag{2}
\end{align*}
$$

where the a_{i} can be thought of as functions of either $n \in \mathbb{Z}$ or $x \in \mathbb{R}$; in either case, the commutation rule of ζ and the a is

$$
\begin{equation*}
\zeta^{\prime} a=\Delta^{\prime}(a) \zeta^{\prime} \quad l \in \mathbb{Z} \tag{3}
\end{equation*}
$$

where $\left[\Delta^{\prime}(a)\right](n):=a(n+l)$ and $\left[\Delta^{\prime}(a)\right](x):=a(x+l \varepsilon), \varepsilon$ being a (small) formal parameter. Thus, Δ acts on functions as dual to the argument shift, and ζ is the operator version of Δ. The additional notation employed in (1) is

$$
\begin{align*}
& \left(\sum \varphi_{l} \zeta^{l}\right)_{+}:=\sum_{l \geqslant 0} \varphi_{l} \zeta^{l} \tag{4}\\
& {[X, Y]:=X Y-Y X .} \tag{5}
\end{align*}
$$

For the first non-trivial case $m=1$, (1) becomes

$$
\begin{equation*}
a_{i, t}=(\Delta-1)\left(a_{i+1}\right)+a_{i}\left(1-\Delta^{-i}\right)\left(a_{0}\right) \tag{6}
\end{equation*}
$$

which turns, in the continuous limit $\varepsilon \rightarrow 0, \Delta=\exp (\varepsilon \delta / \partial x)$, into

$$
\begin{equation*}
a_{i, t}=a_{i+1, x}+\mathrm{i} a_{i} a_{0, x} \quad i \in \mathbb{Z}_{+} . \tag{7}
\end{equation*}
$$

Now, the infinite-component system (7) results, as is easy to verify, from the following dynamics for the one-particle distribution function $f=f(x, p, t)$:

$$
\begin{align*}
f_{t} & =p f_{, x}-a_{0, x}(p f)_{, p} \tag{8}\\
a_{n} & =\int_{-\infty}^{\infty} f p^{n} \mathrm{~d} p . \tag{9}
\end{align*}
$$

A similar kinetic representation can be given to the full dispersive system (6) and even to the whole hierarchy (1), as follows.

Set

$$
\begin{aligned}
& \left(\sum \varphi_{l} \zeta^{\prime}\right) \leqslant 0:=\sum_{l \leqslant 0} \varphi_{l} \zeta^{\prime} \\
& \operatorname{Smbl}\left(\sum \varphi_{1} \xi^{l}\right):=\sum \varphi_{l} p^{l}
\end{aligned}
$$

Property 1. For any $Q=\Sigma q_{r} r^{1}$, the system of motion equations

$$
\begin{equation*}
L_{, t}=\left[Q_{+}, L\right]_{\leqslant 0} \tag{10}
\end{equation*}
$$

results, via the moments map (9), from the single kinetic equation

$$
\begin{equation*}
f_{, t}=\left[\operatorname{Smbl}\left(Q_{+}\right), f\right]_{(1)} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
[X, Y]_{(1)}:=\sum_{r \geqslant 0} \frac{\varepsilon^{r}}{r!}\left[\left(p \partial_{p}\right)^{r}(X) \partial^{r}(Y)-\partial^{r}(X)\left(\partial_{p} p\right)^{r}(Y)\right] \quad \partial:=\partial / \partial x . \tag{12}
\end{equation*}
$$

Remark. $[X, Y]_{(1)} \neq-[Y, X]_{(1)}$.
Let $B=\left(B_{i j}\right)$ be the (first) Hamiltonian structure [1,2] of the hierarchy (1):

$$
\begin{equation*}
B_{i j}=\Delta^{j} a_{i+j}-a_{i+j} \Delta^{-i} . \tag{13}
\end{equation*}
$$

Thus, the motion equations with a Hamiltonian $H=H(a)$ are

$$
\begin{equation*}
a_{i,}=\sum\left(\Delta^{j} a_{i+j}-a_{i+j} \Delta^{-i}\right)\left(H_{j}\right) \quad H_{j}:=\delta H / \delta a_{j} . \tag{14}
\end{equation*}
$$

Property 2. For any Hamiltonian $H=H(f)$, consider the motion equation

$$
\begin{align*}
& f_{, t}=\bar{B}\left(\frac{\delta H}{\delta f}\right) \tag{15}\\
& \bar{B}:=\sum \frac{\varepsilon^{r}}{r!}\left[\partial^{r} f\left(p \partial_{p}\right)^{r}-\left(\partial_{p} p\right) f \partial^{r}\right] . \tag{16}
\end{align*}
$$

Then the matrix $\bar{B}(16)$ is Hamiltonian.
Property 3. If H in (15) depends upon f only through the a, the Hamiltonian system (15) implies the Hamiltonian system (14). In other words, the moments map (9) is a canonical (=Hamiltonian) map between the Hamiltonian structures (16) and (13).

Corollary 1. For $Q=L^{m}, m \in \mathbf{Z}_{+}$, the kinetic representation (11) is the same as (15) with $H=\operatorname{Res}\left(L^{m+1}\right) /(m+1)$, where

$$
\begin{equation*}
\operatorname{Res}\left(\sum \varphi_{\xi^{\prime}}\right):=\varphi_{0} \tag{17}
\end{equation*}
$$

Indeed, the moments map (9) is injective, and the system (1) can be put into the Hamiltonian form (14) with the Hamiltonian $H=\operatorname{Res}\left(L^{m+1}\right) /(m+1)[1,2]$.

Corollary 2. When H runs through the set $\left\{\operatorname{Res}\left(L^{m+1}\right) /(m+1) \mid m \in \mathbb{Z}_{+}\right\}$, the kinetic flows (15) all commute.

Indeed, this set of Hamiltonians is in involution with respect to the Hamiltonian structure B (13) since the Hamiltonian flows (1) all commute [1,2]; by property 3, the moments map (9) is canonical; hence, these Hamiltonians are in involution in the Hamiltonian structure (16); therefore, the kinetic flows (15) commute as well.

Proof of 1. Equations (10) and (11) are, in full,

$$
\begin{align*}
& a_{i, t}=\sum\left[\Delta^{j}\left(a_{i+j}\right) q_{j}-a_{i+j} \Delta^{-i-j}\left(q_{j}\right)\right] \tag{18}\\
& f_{, 1}=\sum p^{j} \Delta^{j}(f) q_{j}-\sum \frac{\varepsilon^{r}}{r!} p^{j}\left(\partial_{p} p\right)^{r}(f) \partial^{r}\left(q_{j}\right) . \tag{19}
\end{align*}
$$

Applying to (19) the operation $\int_{-\infty}^{\infty} p^{i} \mathrm{~d} p$ and using the formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} p^{i}\left(\partial_{p} p\right)^{r}\left(f p^{j}\right) \mathrm{d} p=(-\mathrm{i})^{r} a_{i+j} \tag{20}
\end{equation*}
$$

we obtain (18).
Proof of 2. The multiplication of symbols of pseudodifferential operators is an associative operation given by the formula [3]

$$
\varphi \circ \psi=\sum_{r} \frac{1}{r!} \partial_{\xi}^{r}(\varphi) \partial^{r}(\psi)
$$

for functions of x and ξ. Changing ξ into $p=\exp (-\varepsilon \xi)$ results in the multiplication

$$
\varphi \circ \psi=\sum \frac{(-\varepsilon)^{r}}{r!}\left(p \partial_{p}\right)^{r}(\varphi) \partial^{r}(\psi)
$$

which produces the Lie algebra structure
$[\varphi, \psi]_{(2)}:=\psi \circ \varphi-\varphi \circ \psi=\sum \frac{(-\varepsilon)^{r}}{r!}\left[\partial^{r}(\varphi)\left(p \partial_{p}\right)^{r}(\psi)-\left(p \partial_{p}\right)^{r}(\varphi) \partial^{r}(\psi)\right]$.
Denoting by f the coordinate on the dual space to the Lie algebra g with the commutator (21), we compute the associated Hamiltonian matrix $\bar{B}:=B(\mathrm{~g})$ by the standard rule [2]:

$$
\varphi \bar{B}(\psi) \sim f[\varphi, \psi]_{(2)}
$$

which yields (16).
Proof of 3. If H depends upon f only through the a then

$$
\frac{\delta H}{\delta f}=\sum p^{k} H_{k}
$$

and (15) becomes

$$
\begin{align*}
f_{, t} & \left.=\sum \frac{\varepsilon^{r}}{r!}\left[\partial^{r} f\left(p \partial_{p}\right)^{r}-\left(\partial_{p} p\right)^{r} f \partial^{r}\right)\right]\left(p^{k} H_{k}\right) \\
& =\sum \frac{\varepsilon^{r}}{r!}\left[\partial^{r}\left(f H_{k}\right) k^{r} p^{k}-\left(\partial_{p} p\right)^{r}\left(f p^{k}\right) \partial^{r}\left(H_{k}\right)\right] \\
& =\sum \Delta^{k}\left(f H_{k}\right) p^{k}-\sum \frac{\varepsilon^{r}}{r!}\left(\partial_{p} p\right)^{r}\left(f p^{k}\right) \partial^{r}\left(H_{k}\right) . \tag{22}
\end{align*}
$$

Applying to (22) the operation $\int_{-\infty}^{\infty} p^{i} \mathrm{~d} p$ and using formula (20) we get (14).
Taking the continuous limit of the properties 1-3 yields the corresponding properties of the continuous zero-dispersion hierarchy commuting with (7).

BAK was partially supported by the NSF.

References

[1] Kupershmidt B A 1982 Lett. Math. Phys. 685
[2] Kupershmidt B A 1985 Discrete Lax Equations and Differential-Difference Equations (Paris: Astérisque)
[3] Manin Yu I 1979 J. Sov. Math. 111

